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For the problem of elastic waves propagating in a quarter plane, the stability of the 
finite difference method is critically dependent on the approximation of the boundary 
conditions and the treatment of the 90” corner. The stability of two classical and two com- 
posed approximations to the boundary conditions is studied using analysis of the local 
propagating matrix and by computer experiments. Mistreatment of certain grid points near 
the comer is found to be the cause of the unstable solution reported by Alterman and 
Rote&erg (1969). Correction of this results in a stable scheme in which the range of 
stability of the different approximations of boundary conditions for the quarter plane is 
the same as for the half plane. The two classical approximations, which use fictitious lines 
of grid points, are reliable for quarter planes only when the ratio of shear velocity to com- 
pressional velocity B/a > 0.5. For /3/a < 0.5 the results they give are contaminated, by 
an oscillation about the true solution in the case of the central difference approximation 
and also by a phase deIay in the one-sided approximation. The first composed approximation 
(A. Ran et al., Geophys. J. R. Astron. Sot. 34 (1975), 727-742) is stable only for &Y > 
0.575. However, the new composed approximation (A. Ilan and D. Loewenthal, Geophys. 
Prospect. 24 (1976), 431-453) is shown to be stable even for small values of /l/a. 

1. INTRODUCTION 

The problem of elastic wave propagation in media containing sharp corners, 
steps, and cracks is of practical interest for seismology, nondestructive testing, and 
other engineering fields. This problem has been investigated both experimentally 
and through mathematical methods. The finite difference method has proved itself 
to be a useful tool for investigation of wave propagation. It was applied to seismologi- 
cal problems by Alterman and Karal [l] and has since been extensively used and 
developed. 

Two of the most delicate tasks in finite difference methods are the introduction of 
boundary conditions into the scheme and the treatment of singular points, such as 
corners and tips of cracks. The manner in which these tasks are carried out may have 
a critical influence on the accuracy and stability of results. There are cases in which a 
scheme gives accurate results for a certain range of parameters but is inaccurate and 
even unstable for parameters outside this range. Aherman and Rotenberg [2] reported 
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on cases in which a scheme is stable for a half-plane but ‘explodes’ numerically when 
applied to a quarter plane. 

The aim of the present paper is to investigate the accuracy and stability of different 
approximations to boundary conditions in a quarter-plane. Ran and Loewenthal [S] 
studied the problem of instability due to boundary conditions in a half-plane. In a 
quarter-plane, the interaction between schemes for the two perpendicular surfaces as 
well as the treatment of the corner introduces further difficulties and may cause more 
restrictions on the parameters of the model. Since a quarter-plane is a basic element 
of geometries containing discontinuities, the range of applicability of each approxima- 
tion is obviously of interest. 

The theory of stability of finite difference schemes with initial and boundary condi- 
tions is not as developed as the theory for pure initial value problems. In the last 
decade an important development has been made in this field. A theory of stability 
of the mixed initial and boundary value problems was proposed by Godunov and 
Ryabenkii [5], modified and developed by Kreiss [IO], and applied to various cases 
notably by Osher [I l] and Gustafsson et al. [6]. This theory was applied mostly to 
geometries consisting of a segment of one-dimensional line. It can be generalized 
to be applied also on a half-plane or a strip, but apparently it is not applicable to media 
containing corners. 

Ilan and Loewenthal [8] proposed a technique for checking the stability of a given 
finite difference scheme, which takes into account the approximation of the boundary 
conditions. It is based on analyzing a propagating matrix associated with a small 
sample of the grid including surface points. In the present paper this method is 
applied to a quarter-plane. Considering the matrix of propagation enables us to point 
out the causes of instability of cases reported by Alterman and Rotenberg [2], and 
to propose a remedy for the situation. The paper is organized as follows: Section 2 
describes the model. Section 3 includes the finite difference scheme with four different 
approximations to boundary conditions and two treatments of the corenr. The results 
of the different approximations are compared in Section 4. The causes of instability 
of the central approximation applied to a quarter-plane are detected and the scheme is 
changed slightly to make it stable. Section 4 includes also numerical experiments for 
determination of the range of stability and of the applicability of each approximation. 
In Section 5 the matrix of propagation associated with a sample of typical grid in a 
quarter plane is analyzed. 

2. MODEL ASSUMPTIONS 

In order to study instability due to boundary conditions in media containing 
corners the simplest geometry of a quarter-plane, has been chosen. The material is 
assumed to be perfectly elastic, isotropic, and homogeneous, 01 is the compressional 
and fi is the shear velocity. The quarter-plane is excited by a compressional point 
source at the origin of the Cartesian coordinate system. Let the x axis be parallel 
to the horizontal free surface with z pointing vertically upwards. Let (U, W) be 
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the horizontal and vertical displacements, respectively, and t denote the time. The 
equations of motion are as follows: 

The initial conditions are 

u= W2L!2c@ at at ’ t < 0. 

At time t = 0 the point source starts to emit a compressional pulse. The radial 
displacement S(r, t) due to the source at a distance r = (x2 + ~?)l/~ is given by 

S(r~ t) = $ [G(r, t) - 4G(r, t - A) + 6G(r, t - 24) 

- 4G(r, t - 34) + G(r, t - 44)], 

where 

G(r, 0 = &I+ [(q2 - 1)1/z (2q3 + nq) 

- 3(4q2 + 1) log((q2 - 1y2 + q)] H(q - 1). (3) 

Here q = h/t-, a is a constant, H is the Heaviside’s unit step function, and d is a 
parameter which determines the width of the pulse. S(r, t) is a source function which 
was found to be suitable for finite difference schemes due to its high order of smooth- 
ness in [8]. 

The boundary conditions of the stress free surface are 

(cc” - 2j3.9 g + a2 z = 0 on z = constant for all t 

(a” - 282) f&y + cy2 g = 0 on x = constant for all t. 

(4) 

(5) 
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L 

FIG. 1. The grid imposed on the quarter plane. 

3. FINITE DIFFERENCE SCHEME 

A rectangular grid is superimposed on the quarter-plane (see Fig. 1) with increments 
dx, dz in the x and z directions, respectively. A further discretization is assumed in 
time. x = j dx, z = k dz, t = p dt; where j, k, and p are integers. Let y denote the 
ratio of the grid increment dz to kc. 

y = AZ/AX. 

For numerical experiments it is convenient to choose a square grid Ax = AZ = h. 
The horizontal and vertical displacements of the grid point (j, k) at time level p is 

denoted by (U$ , W&J. 
The time increment At is chosen in a way that von Neumann criterion for stability is 

fulfilled. 

At < Ax 
(a” + pyy2 Y<l 

< 
AZ 

(Lx” + /32/y”)‘” Y>l 
(6) 

This stability condition was determined by Alterman and Loewenthal [3] and 
guarantees stability of the finite difference scheme for Eq. (1) in infinite domains. An 
appropriate choice of the overall dimensions of the grid can guarantee that no 
artificial reflection will contaminate the results up to a certain desired time. 
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The finite difference formulas for calculating the displacements of inner points are 
derived by replacing the derivatives of the equation of motion (1) with central differ- 
ences. These formulas have been given by Alterman and Rotenberg [2] and many 
others and will not be repeated here. Along the stress-free furface a special treatment 
is needed. 

Four different approximations for boundary conditions have been compared and 
their influence on the stability and accuracy of the results have been investigated. The 
same approximations were studied in [8] in a model of a half-plane. In a quarter-plane 
the interaction between the horizontal and the vertical boundary as well as the treat- 
ment of the grid points near the corner may cause additional problems that are 
described later. 

Let z = Ndz be the horizontal stress-free surface. The first two formulas according 
to Alterman and Karal [I] and Alterman and Rotenberg [Z] need the aid of fictitious 
points located on z = (N + 1) dz. 

1. Central Approximation 

U&+1 = GN-1 - ?oK%.N - W&%J, 
(7) 

w;,,, = W$-1 - y(l - 2wz+1,N - UL iv). 
2. One-Sided Approximation 

3. Composed Approximation 

where y = AZ/AX and 6 = /3”/a”. 
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4. New Composed Approximation 

+ 0.5 g$ <P” - ~“WAl,i?-1 - 4%.,-l) (10) 

According to the new composed method the horizontal displacement is calculated 
in the same way as in the composed approximation (9). 

Approximations (9) and (10) were developed by Ilan et al. [7, 81. These approxima- 
tions of the boundary conditions are of the second-order of accuracy and do not need 
the aid of fictitious lines. The new composed approximation has been found to be 
stable for a wide range of materials when applied to half-planes. 

Here a vertical stress-free surface is added. Approximations (7)-(10) can be applied 
on the vertical boundary x-constant after transferring them in the following manner 

u-+ w, w-+ u; Y -+ l/Y; ax -+ az; a~+ ax. 

4. THE CORNER 

Karp and Karal [9] analyzed the stress behavior in the neighborhood of the tip of a 
wedge. They found that in the steady state the stresses are infinite at the tips of 
wedges, in which the angle between the surfaces is larger than 7r and are zero other- 
wise. For the case of elastic wedges with right angles the displacements as well as the 
stresses are finite in the corner. But the boundary conditions are not well defined 
there, as the four requirements (4), (5) cannot be fulfilled simultaneously at the corner. 

Alterman and Loewenthal [3] proposed two alternative approaches to the calcula- 
tion of the displacements at the corner. The first approach is to smooth the corner 
slightly making the tangent to the boundary at an angle of 45” to both axes. Let us 
denote the corner by (M, N). Under this assumption the displacements at the corner 
are calculated by the following formulas: 

Gf,N = WGf-1.N - J+%.N-1) + (1 - wJiL,N - CL,,,) + GL.N-13 
(11) 

w&,N = wJ.cf,Iv-1 - G-1.N) + (1 - wG,iv-1 - WLN) + WLV-12 

where 8 = j12/a2. 
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The second approach is to require that the normal stress components of both the 
horizontal and the vertical surface are zero, and to ignore the condition aU/az + 
a w/ax = 0. 

Under the last assumption the following condition is obtained. 

au aw o -czz-Yzz. 
ax az W) 

The finite difference approximation to (12) can be simply 

Applying (11) or (13) to the corner results in similar solutions. Our experiments 
show that neither of these approximations causes instability. Generally, mistreatment 
of a few grid points or even of an individual point may ‘explode’ the whole solution, 
as is illustrated in the following section. 

5. ACCURACY AND STABILITY OF RESULTS 

Many experiments show that approximations to the boundary conditions in the 
vicinity of a right corner may have a critical influence on the stability of results. 

Alterman and Rotenberg [2] applied the central approximation (7) to their model 
of a quarter-plane and the results became unstable after a few dozen time steps. The 
same scheme applied to a half-plane is stable for a wide range of /3/a, as was found in 
[8]. Alterman and Rotenberg [2] reported also that while they relaxed the accuracy 
and replaced the normal derivatives by one-sided differences (8) they got stable 
results. When they approximated the tangential derivatives of the boundary conditions 
by one-sided differences also, the scheme became unstable. 

The aim of this section is to point out the cause of instability and to propose a 
remedy. 

The centered approximation (7) represents the free surface boundary conditions 
in one time level. Concentrating our attention on the aid grid points (M, N + 1) 
(M + 1, N) (see Fig. 1) we see that the calculation of the displacements at these 
points is, therefore, interdependent and needs the solution of a system of four algebraic 
equations in four unknowns in every time step. Applying the central approximation (7) 
we have 

%,N+, + ywif+l,N = %,N-1 + ywif-,,N, 

%f.N+l + y(l - z6) %+I,, = wii,N-, + y(l - 23 U&NV 

(14) 
w;+,.N + (l/y) %.N+I = w&N + (l/y) u&.N-1, 

%t-1.N + (I/y)(l - 26) w&.N+l = uk,,N + (l/y)(l - 26) %f,N-, . 
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The determinant of (14) is zero for all values of grid ratio y and 6 = ,@/a” so that 
the equations have no solution and the scheme is unstable. 

Using the one-sided approximation (8), a similar system of equations is obtained 
for the displacements at (M + 1, N)(M, N + 1). But the determinant of the second 
system is 

det = $[l - &(I - 2Q2]. (15) 

Determinant (15) is zero for 6 = $, 6 = -4. These values are outside the range of a 
real 6 which is, 0 < 6 = (/~/cY)~ < i. 

Therefore, the algebraic system of equations has a unique solution for this case, 

1 
uG+lsN = 1 - (l/4)(1 - 26)2 I U&N + + (1 - 2wcfJv-, - WC,,) 

G4+1,, = 3 4 KLN + J- (U&N-1 - ef,N) - ‘4 WL,N , I 2Y I 

U” M.N+l = - ; uif,N + 3 (wh-,,N - 
I 

wit,,) - ; u&N-11, 

W’ 
1 

M.N+l = 1 _ (1,4)(1 _ 292 whV + -f (l - 2s)(ui4-l,N - %,N) 
I 

Applying one-sided approximations to both x and z derivatives of Eqs. (4) and (5), a 
system of equations for (M + 1, N)(M, N + 1) is obtained with a zero determinant 
for every grid and every medium. 

This analysis explains the cases of instability reported by Alterman and Rotenberg 
[2]. The following numerical experiment has shown that the mistreatment of points 
(M + 1, N)(M, N + 1) was the only reason for instability. Figure 2a shows the 
components of displacements versus ta/h on the surface of a half-plane containing an 
impulsive point source. The central approximation to the boundary conditions (7) 
was applied. The same approximation was applied to a quarter-plane in Fig. 2b to 
obtain an unstable result. In Fig. 2c the central approximation was applied to all the 
surface grid points except points (M + 1, N)(M, N + 1) where Eqs. (16) were used. 
Figure 2c demonstrates that a better understanding of the causes of instability in a 
quarter-plane enables us to use the more accurate central approximation to the 
boundary conditions and yet to maintain the stability of the scheme. Repeating this 
experiment for the two different approximations for the corners, (11) and (13), gives 
similar results. 
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FIG. 2. The components of displacements as functions of tar/h, as obtained by the central 
approximation to the boundary conditions (a) on a half plane (b) on a quarter plane (c) on a 
quarter plane after applying the corrected scheme to the points near the comer. The source is located 
at a depth of lOh, at a horizontal distance of 1Oh from comer, here ,!?/a = 0.58. 

The composed and the new composed approximations, (9) and (IO), like the main 
scheme for inner points are three-level schemes. The displacements in the time step 
p + 1 are dependent on the displacements of time steps p and p - 1. Therefore, no 
implicit system of equations exists for these cases. 

The following numerical experiment has been performed in order to evaluate the 
accuracy of results and to study the range of applicability of each scheme. The four 
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approximations to the boundary conditions (including the correction to the central 
approximation) were applied to the same model and the results were compared. In 
order to emphasize the effect of the corner and of the two perpendicular surfaces, 
the source was situated at a distance of 1Oh from each surface, and the observers were 
located in the vicinity of the corner. Figures 3, 4, and 5 show the components of 
displacements versus the dimensionless time ta/h in quarter-planes with three different 
ratios of parameters. The observation point was chosen on the surface at a distance 
of 6h from the corner. At this point the direct pulse P and the converted shear pulse PS 
can be distinguished. Phase PP apparently coincides with the direct pulse. The arrival 
times of the different phases were computed according to the geometric ray theory. 

fl/a = 0.6 

BOUNDARY APPROXIMATION 

LCENTRED APE -‘---I- 

2.ONE-SIDEDAPP. ----- 

3,COMPOSED API? ......‘....‘.. 

4.NEW COMPOSED APP. - 

OBSERVER- 

YIURCE #$ 

I 

-0.03L ’ ’ I ’ ’ ’ ’ ’ ’ 1 
0 ta/h 88 

-o.o& ’ ’ ’ * ’ I ’ ’ ’ ’ 
0 talh ee 

FIG, 3. Displacements versus iol/h (a) vertical (b) horizontal component. Comparison of four 
approximations to the stress free boundary conditions for a quarter plane. Here /l/a = 0.6; the 
point source S,(r, t) is at a depth of lOh, and a distance of IOh from the comer. 
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Figure 3 shows the displacements in a quarter-plane in which ~?/cx = 0.6. For this 
ratio of wave velocities the four approximations to the boundary conditions result in 
similar solutions. The result of the composed approximation somewhat oscillate 
about the real solution, and the PS pulse obtained by the one-sided approximation (8) 
has a phase delay of 8.5 %. When /3/a is made smaller than 0.58 the solution of the 
composed approximation grows out of bounds (Fig. 4 and 5). When j3Ja is made 
smaller than 0.35 the result of the one-sided approximation also “explodes” numeri- 
cally. Experimentally it has been found that the range of stability of each method 
(7)-(10) in a quarter plane is the same as the range of stability in a half plane. 

p/a = 0.5 

0.15r 
BOUNDARY APPROXIMATION 

I.CENTRED APP. -. -.- - 

Z.ONE-SIDED APP.----- 

s,CO,#f,SED APP .._ 

4.NEW COMPOSED APP.- 

0 talh 

0.15- 

-0.051 ’ ’ * 8 c @ 3 8 3 ’ 
0 ta( h 88 

FIG. 4. The components of displacement as functions of t/ah on the surface of a quarter plane. 
Here /3/a = 0.5 and the other details are the same as in Fig. 3. 
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BOUNDARY APPROXIMATION 

LCENTRED APP. -. -. - - 

3,COMPOSED APP. .. ... ‘-..“_- 

4NEW COMPOSED APP. ~ 

a: 2 

-o.os;, ’ ’ ’ n s ’ ’ ’ t ’ 
talh 88 

FIG. 5. The components of displacements as functions of t/w% on the surface of a quarter plane. 
Here #?/a = 0.4 and all the other details are the same as in Fig. 3. 

A phase delay is found in solutions of the one-sided approximation (8). The delay 
increases as /3/a decreases as can be seen in Fig. 4 and 5. For small values of /3/a 
the results of the central and the one-sided approximations are contaminated by 
oscillations about the real solution. The amplitude of the oscillations increases as 
/I/a decreases. For p/8/01 less or equal to 0.5 the phase delay and the oscillations cause 
unreliable solutions of the central and the one-sided approximation. Only the new 
composed approximation (10) gives smooth solutions and accurate arrival times for 
small values of/S/a. 
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6. ANALYSIS OF THE LOCAL MATRIX OF COEFFICIENTS 

The basic idea of finite difference theory is to replace a differential problem by a set 
of linear algebraic equations. The operator which transfers the solution from one time 
step to the other can always be represented in a matrix form. This propagating matrix 
must include the information as to whether the scheme is stable or not. But for an 
average grid this matrix has huge dimensions and is therefore difficult to analyze. 
Ilan and Loewenthal [8] showed that it is sufficient to consider a typical small sample 
of the grid including surface points. Calculating the eigenvalues of the local propa- 
gating matrix associated with this sample gave accurate information about the 
stability of the difference scheme in a halt-plane. This method can be easily generalized 
to a quarter-plane. The small sample of the grid in the last case has to include the 
corner and a few points on the two perpendicular surfaces. Consider a grid of m x n 
points in the vicinity of the corner. The components of displacements of this grid 
may be arranged in the form of a block vector 

(17) 

where each column U1p includes the displacements of the I-th row of the grid sample. 

U” 1.1 

WTJ 

up 2.1 

up = w” . 
291 

U" m.1 

LKKZ -1 

08) 

The equation of motion and the boundary conditions on the perpendicular surfaces 
are represented by the following equation 

UP+’ = QuP - IUP-~, (19) 

here Z is the identity matrix and Q is a matrix of order 2 mn which is dependent on the 
parameters of the medium and on the ratio between the grid increments. 

Boore [4] showed that for the three level schemes (19) a necessary condition for 
stability is that no eigenvalue of Q has an absolute value larger than 2. 

In the Appendix to [8] an example of a local matrix of propagation Q was given for 
the composed approximation on a half-plane. This sample included grid points on the 



402 ALMOGA ILAN 

free surface and on three artificial boundaries, on which the continuity of the normal 
displacements was assumed. For a quarter-plane the following modifications were 
made to the matrix Q. The last two rows were replaced by the formulas representing 
the right corner [either (11) or (13)], and the last two rows in every submatrix A, B, C 
were changed to represent the boundary conditions on the vertical stress free surface. 

The eigenvalues of Q were calculated numerically for various B/X and for several 
grid samples, and the stability conditions for infinite plane (6) was always fulfilled. 
No eigenvalue of Q with absolute value larger than 2 was found in the range of 
stability of each approximation. On the other hand when /3/6/c~. wa: made less than the 
critical value the spectrum of Q included at least one eigenvalue with absolute value 
larger than 2. The range of stability was found to be the same for a half- and a quarter- 
plane and is summarized in Table I. 

TABLE I 

The Range of Stability in a Quarter Plane 

Approximation Range of Stability 

Centerd 

One-sided 

Composed 

New composed 

7. CONCLUSIONS 

Considering several finite difference schemes for a quarter-plane we found that 
mistreatment of a few grid points near the corner may cause instability of the solution. 
Analysis of the matrix of propagation in the vicinity of the corner enables us to detect 
the cause of instability reported by Alterman and Rotenberg [2] and to correct it. 
Then, the stability of finite difference schemes with four different approximations is 
found to be the same for the cases of a half-plane and a quarter-plane. In a quarter- 
plane with /I/8/01 less than 0.5 the results of the central and the one-sided approximation 
are contaminated by oscillations about the real solution and by a phase delay. These 
inaccuracies increase when /3/a decreases. Only the new composed approximation 
results in smooth solutions with accurate arrival times of the reflected phases in 
quarter-planes with small values of /~/LX. 
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